Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38700992

RESUMEN

Perovskite nanocrystals (PNCs) offer unique advantages in large-area and thick-film deposition for X-ray detection applications due to the decoupling of the crystallization of perovskite from film formation, as well as their low-temperature and scalable deposition methods. However, the partial detachment of long-chain ligands in PNCs during the purification process would lead to the exposure of surface defects, making it challenging to ensure efficient charge carrier extraction and stable X-ray detection. In this study, we propose a beneficial strategy that involves the in situ reparation of these exposed defects with sodium bromide (NaBr) during the purification process to construct CsPbBr3 PNC-organic bulk heterostructure X-ray detectors. The NaBr-passivated PNCs exhibit stronger photoluminescence intensity and lower trap density in films compared to those of the control samples, confirming the effective passivation of halide vacancy defects. Furthermore, the NiOx hole transport layer with remarkable electron blocking capability is introduced to further suppress the dark current of the devices. Consequently, the optimal devices exhibit a large sensitivity of 4237 µC Gyair-1 cm-2 and a low dark current density of 10 nA cm-2, as well as improved operational stability, which allows for high-contrast and low-dose X-ray imaging applications.

2.
Small ; : e2309922, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593357

RESUMEN

Self-trapped exciton (STE) luminescence, typically associated with structural deformation of excited states, has attracted significant attention in metal halide materials recently. However, the mechanism of multiexciton STE emissions in certain metal halide crystals remains largely unexplored. This study investigates dual luminescence emissions in HCOO- doped Cs3Cu2I5 single crystals using transient and steady-state spectroscopy. The dual emissions are attributed to intrinsic STE luminescence originating from the host lattice and extrinsic STE luminescence induced by external dopants, respectively, each of which can be triggered independently at distinct energy levels. Theoretical calculations reveal that multiexciton emission originates from structural distortion of the host and dopant STEs within the 0D lattice in their respective excited states. By meticulously tuning the excitation wavelength and selectively exciting different STEs, the dynamic alteration of color change in Cs3Cu2I5:HCOO- crystals is demonstrated. Ultimately, owing to an extraordinarily high photoluminescence quantum yield (99.01%) and a diminished degree of self-absorption in Cs3Cu2I5:HCOO- crystals, they exhibit remarkable X-ray scintillation characteristics with light yield being improved by 5.4 times as compared to that of pristine Cs3Cu2I5 crystals, opening up exciting avenues for achieving low-dose X-ray detection and imaging.

3.
Sci Adv ; 10(17): eadj8659, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669325

RESUMEN

Metal halide perovskites exhibit substantial potential for advancing next-generation x-ray detection. However, fabricating high-performance pixelated imaging arrays remains challenging due to the substantial dark current density and stability issues associated with common organic-inorganic hybrid perovskites. Here, we develop a vapor deposition method to create the first all-inorganic perovskite heterojunction film. The heterojunction introduction effectively reduces the dark current density of detectors to about 0.8 nA·cm-2, satisfying thin-film transistor (TFT) integration standards, while also increases sensitivity to above 2.6 × 104 µC·Gyair-1·cm-2, thus giving rise to a record low detection limit of <1 nGyair·s-1 among all polycrystalline perovskite-based x-ray detectors. The devices also demonstrate remarkable stability across multifarious demanding working conditions. Last, through monolithic integration of the heterojunction film with a 64 × 64 pixelated TFT array, we have achieved high-resolution real-time x-ray imaging, which paves the way for the application of all-inorganic perovskite in low-dose flat-panel x-ray detection.

4.
Food Chem ; 444: 138624, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38354655

RESUMEN

A novel ratiometric fluorescent probe based on non-conjugated polymer dots (NCPDs) and gold nanocluster (AuNCs) was constructed to determine tert-butylhydroquinone (TBHQ). The probe exhibited dual emission peaks at 480 nm and 630 nm under 370 nm excitation. The fluorescence of AuNCs was quenched by TBHQ due to strong electrostatic interactions, whereas the emission of NCPDs increased. The ratio of fluorescence intensity at 480 nm to 630 nm (F480 / F630) was monitored as analytical signal response. The probe have been utilized for the detection of TBHQ with good linear relationship in the range of 0.2 to 60 µg/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.048 µg/mL and 0.159 µg/L, respectively. Three levels of spiked-in TBHQ concentrations were obtained with recovery rates from 80 % to 102 %. The present study provided an effective ratiometric fluorescence method for selective screening of TBHQ in food samples.


Asunto(s)
Hidroquinonas , Nanopartículas del Metal , Puntos Cuánticos , Espectrometría de Fluorescencia/métodos , Polímeros , Oro , Colorantes Fluorescentes
5.
Adv Mater ; 36(19): e2310811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38358297

RESUMEN

Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a -4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh *) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35-1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.

6.
Biosensors (Basel) ; 14(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38391983

RESUMEN

Nanomaterials are desirable for sensing applications. Therefore, MnO2 nanosheets and nitrogen-doped carbon dots (NCDs) were used to construct a ratiometric biosensor for quantification of 2,4-dichlorophenoxyacetic acid. The MnO2 nanosheets drove the oxidation of colorless o-phenylenediamine to OPDox, which exhibits fluorescence emission peaks at 556 nm. The fluorescence of OPDox was efficiently quenched and the NCDs were recovered as the ascorbic acid produced by the hydrolyzed alkaline phosphatase (ALP) substrate increased. Owing to the selective inhibition of ALP activity by 2,4-D and the inner filter effect, the fluorescence intensity of the NCDs at 430 nm was suppressed, whereas that at 556 nm was maintained. The fluorescence intensity ratio was used for quantitative detection. The linear equation was F = 0.138 + 3.863·C 2,4-D (correlation coefficient R2 = 0.9904), whereas the limits of detection (LOD) and quantification (LOQ) were 0.013 and 0.040 µg/mL. The method was successfully employed for the determination of 2,4-D in different vegetables with recoveries of 79%~105%. The fluorescent color change in the 2,4-D sensing system can also be captured by a smartphone to achieve colorimetric detection by homemade portable test kit.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Óxidos , Compuestos de Manganeso , Nitrógeno , Carbono , Límite de Detección , Ácido 2,4-Diclorofenoxiacético , Colorantes Fluorescentes
7.
Small ; : e2309233, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050935

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have shown incalculable application potential in the fields of next-generation displays and light communication owing to the rapidly increased external quantum efficiencies (EQEs). However, most PeLEDs obtain a maximum EQE at small current density (J) region and suffer from severe efficiency roll-off in different extents. Herein, it is demonstrated that the dopant with large dipole moment like KBF4 facilitates the effective dielectric regulation of perovskite emissive layer. The increased dielectric constant lowers the exciton binding energy and suppresses the Auger recombination of the 2D/3D segregated perovskite structure, which improves the photoluminescence quantum yield remarkably at an excitation intensity up to 103  mW cm-2 . Accordingly, the top-emission PeLED that delivers a high maximum EQE above 20% is fabricated and can retain EQE > 10% at an extremely high J of 708 mA cm-2 . These results represent one of the most efficient top-emission PeLEDs with ultra-low efficiency roll-off, which provide a viable methodology for tuning the dielectric response of perovskite films for improved high radiance performance of perovskite electroluminescence devices.

8.
Anal Methods ; 15(45): 6239-6244, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37955159

RESUMEN

A novel, sensitive, and selective fluorescence sensor based on N-doped Mo oxide quantum dots (N-MoOx QDs) was fabricated for the detection of Cu2+ ions in water. The presence of Cu2+ induced dynamic fluorescence quenching of the N-MoOx QDs. The sensing conditions were optimized to enhance selectivity and sensitivity. Under optimal conditions, the linear relationship between fluorescence response at 408 nm and Cu2+ concentration was determined. The linear range of this relationship was 1-100 µM. The limits of detection (LOD) and quantitation (LOQ) for Cu2+ were 0.78 µM and 2.34 µM, respectively. The method was successfully applied to detect Cu2+ in water samples with satisfactory sample recovery rates from 91.7 to 116.4%. The sensor exhibits high selectivity toward Cu2+, making it useful for environmental sample monitoring.

9.
Adv Mater ; 35(47): e2211026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37796177

RESUMEN

Conventional indirect X-ray detectors employ scintillating phosphors to convert X-ray photons into photodiode-detectable visible photons, leading to low conversion efficiencies, low spatial resolutions, and optical crosstalk. Consequently, X-ray detectors that directly convert photons into electric signals have long been desired for high-performance medical imaging and industrial inspection. Although emerging hybrid inorganic-organic halide perovskites, such as CH3 NH3 PbI3 and CH3 NH3 PbBr3 , exhibit high sensitivity, they have salient drawbacks including structural instability, ion motion, and the use of toxic Pb. Here, this work reports an ultrastable, low-dose X-ray detector comprising KTaO3 perovskite films epitaxially grown on a Nb-doped strontium titanate substrate using a low-cost solution method. The detector exhibits a stable photocurrent under high-dose irradiation, high-temperature (200 °C), and aqueous conditions. Moreover, the prototype KTaO3 -film-based detector exhibits a 150-fold higher sensitivity (3150 µC Gyair -1 cm-2 ) and 150-fold lower detection limit (<40 nGyair s-1 ) than those of commercial α-Se-based direct detectors. Systematic investigations reveal that the high stability of the detector originates from the strong covalent bonds within the KTaO3 film, whereas the low detection limit is due to a lattice-gradient-driven built-in electric field and the high insulating property of KTaO3 film. This study unveils a new path toward the fabrication of green, stable, and low-dose X-ray detectors using oxide perovskite films, which have significant application potential in medical imaging and security operations.

10.
Nat Commun ; 14(1): 5886, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735173

RESUMEN

The stress hormone, Abscisic acid (ABA), is crucial for plants to respond to changes in their environment. It triggers changes in cytoplasmic Ca2+ levels, which activate plant responses to external stresses. However, how Ca2+ sensing and signaling feeds back into ABA signaling is not well understood. Here we reveal a calcium sensing module that negatively regulates drought stress via modulating ABA receptor PYLs. Mutants cbl1/9 and cipk1 exhibit hypersensitivity to ABA and drought resilience. Furthermore, CIPK1 is shown to interact with and phosphorylate 7 of 14 ABA receptors at the evolutionarily conserved site corresponding to PYL4 Ser129, thereby suppressing their activities and promoting PP2C activities under normal conditions. Under drought stress, ABA impedes PYLs phosphorylation by CIPK1 to respond to ABA signaling and survive in unfavorable environment. These findings provide insights into a previously unknown negative regulatory mechanism of the ABA signaling pathway, which is mediated by CBL1/9-CIPK1-PYLs, resulting in plants that are more sensitive to drought stress. This discovery expands our knowledge about the interplay between Ca2+ signaling and ABA signaling.


Asunto(s)
Ácido Abscísico , Calcio , Sequías , Citoplasma , Citosol
11.
Light Sci Appl ; 12(1): 85, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009810

RESUMEN

Solution-processed organic‒inorganic halide perovskite (OIHP) single crystals (SCs) have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost preparation. However, the energy resolution (ER) and stability of OIHP detectors still lag far behind those of melt-grown inorganic perovskite and commercial CdZnTe counterparts due to the absence of detector-grade high-quality OIHP SCs. Here, we reveal that the crystallinity and uniformity of OIHP SCs are drastically improved by relieving interfacial stress with a facial gel-confined solution growth strategy, thus enabling the direct preparation of large-area detector-grade SC wafers up to 4 cm with drastically suppressed electronic and ionic defects. The resultant radiation detectors show both a small dark current below 1 nA and excellent baseline stability of 4.0 × 10-8 nA cm-1 s-1 V-1, which are rarely realized in OIHP detectors. Consequently, a record high ER of 4.9% at 59.5 keV is achieved under a standard 241Am gamma-ray source with an ultralow operating bias of 5 V, representing the best gamma-ray spectroscopy performance among all solution-processed semiconductor radiation detectors ever reported.

12.
Sci Adv ; 9(13): eadf6152, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989368

RESUMEN

High-sensitivity organic photodetectors (OPDs) with strong near-infrared (NIR) photoresponse have attracted enormous attention due to potential applications in emerging technologies. However, few organic semiconductors have been reported with photoelectric response beyond ~1.1 µm, the detection limit of silicon detectors. Here, we extend the absorption of organic small-molecule semiconductors to below silicon bandgap, and even to 0.77 eV, through introducing the newly designed quinoid-terminals with high Mulliken-electronegativity (5.62 eV). The fabricated photodiode-type NIR OPDs exhibit detectivity (D*) over 1012 Jones in 0.41 to 1.2 µm under zero bias with a maximum of 2.9 × 1012 Jones at 1.02 µm, which is the highest D* for reported OPDs in photovoltaic-mode with response spectra beyond 1.1 µm. The high D* in 0.9 to 1.2 µm is comparable to those of commercial InGaAs photodetectors, despite the detection limit of our OPDs is shorter than InGaAs (~1.7 µm). A spectrometer prototype with a wide measurable region (0.4 to 1.25 µm) and NIR imaging under 1.2-µm illumination are demonstrated successfully in OPDs.

13.
Plant Physiol ; 192(2): 910-926, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36943277

RESUMEN

Arsenate [As(V)] is a metalloid with heavy metal properties and is widespread in many environments. Dietary intake of food derived from arsenate-contaminated plants constitutes a major fraction of the potentially health-threatening human exposure to arsenic. However, the mechanisms underlying how plants respond to arsenate stress and regulate the function of relevant transporters are poorly understood. Here, we observed that As(V) stress induces a significant Ca2+ signal in Arabidopsis (Arabidopsis thaliana) roots. We then identified a calcium-dependent protein kinase, CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), that interacts with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) in vitro and in vivo. cpk23 mutants displayed a sensitive phenotype under As(V) stress, while transgenic Arabidopsis plants with constitutively active CPK23 showed a tolerant phenotype. Furthermore, CPK23 phosphorylated the C-terminal domain of PHT1;1, primarily at Ser514 and Ser520. Multiple experiments on PHT1;1 variants demonstrated that PHT1;1S514 phosphorylation is essential for PHT1;1 function and localization under As(V) stress. In summary, we revealed that plasma-membrane-associated calcium signaling regulates As(V) tolerance. These results provide insight for crop bioengineering to specifically address arsenate pollution in soils.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Arseniatos/toxicidad , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Membrana Celular/metabolismo
14.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892282

RESUMEN

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

15.
Adv Mater ; 35(21): e2212258, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840924

RESUMEN

Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.

16.
Light Sci Appl ; 12(1): 8, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588109

RESUMEN

The ionizing radiation possesses extremely strong penetration capability, which poses serious risk on the health of the human body and jeopardize electronics. Here the authors demonstrate that MAPbI3/epoxy composites prepared by a simple method show high radiation shielding performance.

17.
Food Chem ; 410: 135151, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623463

RESUMEN

A triple-mode colorimetric and fluorescent sensing scheme based on manganese dioxide nanoparticles (MnO2NPs) and carbon quantum dots (CQDs) were developed to determine nitrite. MnO2NPs can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into a blue oxidation product (TMBox), which is further oxidized into a yellow diimine derivative by nitrite. The ratio of absorbance at 652 nm to 452 nm was monitored as signal response for UV-vis detection mode. A "turn-off" CQDs fluorescence probe was also constructed for fluorescent detection mode. Smartphone tool kit was used to capture the color of sample for smartphone-based measurement. Various analytical performance under different detection modes were obtained and compared. The proposed methods were applied to food samples with satisfactory recoveries (83.3-106 %). The results were validated with AOAC standard spectrophotometric method. The current triple-mode detection were accurate, convenient, low-cost and fast for analyzing nitrite in foods and water samples on-site.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Colorantes Fluorescentes , Carbono , Nitritos , Colorimetría/métodos , Teléfono Inteligente , Compuestos de Manganeso , Óxidos , Límite de Detección
18.
J Environ Sci (China) ; 125: 823-830, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375964

RESUMEN

Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is a commonly used organophosphate-based flame retardant and can bio-accumulate in human tissues and organs. As its structure is similar to that of neurotoxic organophosphate pesticides, the neurotoxicity of TDCIPP has raised widespread concerns. TDCIPP can increase neuronal apoptosis and induce autophagy. However, its regulatory mechanism remains unclear. In this study, we found that the expression upregulation of the DNA Damage-Inducible Transcript 4 (DDIT4) protein, which might play essential roles in TDCIPP-induced neuronal autophagy and apoptosis, was observed in TDCIPP-treated differentiated rat PC12 cells. Furthermore, we determined the protective effect of the DDIT4 suppression on the autophagy and apoptosis induced by TDCIPP using Western blot (WB) and Flow cytometry (FACS) analysis. We observed that TDCIPP treatment increased the DDIT4, the autophagy marker Beclin-1, and the microtubule-associated protein light chain 3-II (LC3II) expressions and decreased the mTOR phosphorylation levels. Conversely, the suppression of DDIT4 expression increased the p-mTOR expression and decreased cell autophagy and apoptosis. Collectively, our results revealed the function of DDIT4 in cell death mechanisms triggered by TDCIPP through the mTOR signaling axis in differentiated PC12 cells. Thus, this study provided vital evidence necessary to explain the mechanism of TDCIPP-induced neurotoxicity in differentiated PC12 cells.


Asunto(s)
Apoptosis , Autofagia , Organofosfatos , Factores de Transcripción , Animales , Ratas , Organofosfatos/efectos adversos , Compuestos Organofosforados , Células PC12 , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
19.
Environ Pollut ; 314: 120216, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152722

RESUMEN

Insufficient evidence exists regarding the effects of microplastics (MPs) on the neuronal toxicity of heavy metals in the early stages of organisms. Herein, the effects of micro-polystyrene (µ-PS; 157 µm) and nano-polystyrene (n-PS; 100 nm) particles on the neurodevelopmental toxicity of mercury (Hg) in zebrafish embryos were compared. Zebrafish embryos exposed to Hg at the concentration of 0.1 mg L-1 revealed blood disorders, delayed hatching, and malformations such as pericardial oedema and tail deformity. The length of the larval head was significantly reduced (P < 0.01) and in vivo expression of atoh1a in the cerebellum of neuron-specific transgenic zebrafish Tg(atoh1a:dTomato) larvae was inhibited by 29.46% under the Hg treatment. Most of the toxic effects were inhibited by the combined exposure to µ-PS or n-PS with Hg, and n-PS decreased the neurodevelopmental toxicity of Hg more significantly than µ-PS. Metabolomic analysis revealed that in addition to inhibiting the amino acid metabolism pathway as in the µ-PS+Hg treatment, the n-PS+Hg treatment inhibited unsaturated fatty acid metabolism in zebrafish larvae, likely because of a greater reduction in Hg bioavailability, thus reducing the oxidative damage caused by Hg in the larvae. The combined effects of MPs and heavy metals differ greatly among different species and their targeted effects. We conclude that the combined toxicity mechanisms of MPs and heavy metals require further clarification.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Animales , Microplásticos , Pez Cebra/metabolismo , Poliestirenos/toxicidad , Plásticos/metabolismo , Larva , Mercurio/toxicidad , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Metales Pesados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Aminoácidos/metabolismo
20.
Small ; 18(45): e2204752, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36156416

RESUMEN

Vacuum vapor deposition (VVD) is a promising way to advancing the commercialization of perovskite light sources owing to its convenience for wafer-scale mass production and compatibility with silicon photonics manufacturing infrastructure. However, the light emission performance of VVD-grown perovskites still lags far behind that of the conventional solution-processed counterparts due to their inferior luminescence properties. Here, a 0D/3D cesium-lead-bromide perovskite composite film is prepared on Si/SiO2 substrates through composition modulation with the VVD method, which exhibits an ultralow amplified spontaneous emission (ASE) threshold down to 14.3 µJ cm-2 in the optimal films, which is on par with that of the solution-processed counterparts. Meanwhile, they also display intriguing operational stability with negligible emission intensity decay under continuous excitation above ASE threshold for 4 h in the air. The outstanding ASE performance mainly originates from the reduced trap density and weakened electron-phonon coupling in the 3D CsPbBr3 phase enabled by the incorporation of the 0D Cs4 PbBr6 phase. Finally, by integrating the composite film with the distributed feedback (DFB) cavity, DFB lasing is achieved with a low threshold of 18.2 µJ cm-2 under nanosecond-pulsed laser pumping, which highlights the potential of VVD-processed perovskites for developing high-performance lasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...